1. Introduction

Phosphoinositide-specific phospholipases C (PI-PLCs) are essential enzymes that cleave, in a Ca\(^{2+}\)-dependent manner, membrane phosphatidylinositol-4,5-bisphosphate (PI-4,5-P\(_2\)) to produce two second messengers: i) a lipid, diacylglycerol (DAG), and ii) a soluble molecule, inositol 1,4,5-triphosphate (IP\(_3\)). PI-PLCs have been identified in many eukaryotes from yeast to mammals [12], while simplified PI-PLCs are also present in bacteria [3], indicating the probable common evolutionary origin of all PI-PLCs.

In animals, the role and regulation of PI-PLC isoforms are well established [1]. The canonical model states that PI-PLC action is linked to the activation of protein kinase C (PKC) by DAG and to an intracellular Ca\(^{2+}\) release mediated by IP\(_3\)-sensitive channels (IP\(_3\) receptors). The mode of action of plant PI-PLCS must be different from the animal model since the amount of PI-4,5-P\(_2\) is lower in plant membranes [4], plants apparently lack conventional IP3 receptors, and no plant PKC orthologs have been identified to date. However, clear roles (that we will detail) have been assigned to plant PI-PLCs in response to environmental stresses and during development. Despite the conclusive data concerning the role(s) of PI-PLCs in the plant cell, little is known about their in planta...
regulation. In this review we focus on the latest advances in plant PI-PLCs including their biochemical characteristics that precondition their role as regulators of many plant physiological reactions, their regulation and their modes of action. We will show that, as for animal systems, there is a tight connection between PI-PLC and Ca$^{2+}$-signalling while the important mediator for this action might not be IP$_3$, but inositol pentakisphosphate (IP$_5$) or inositol hexakisphosphate (IP$_6$). Finally, we will describe and discuss the active contribution of plant PI-PLCs to phosphatidic acid (PA) production in concert with diacylglycerol kinases (DGK). Indeed, PA is probably the lipid mediator produced by plant PI-PLC pathways, and protein targets of PA have been identified. Whether the lipid and soluble mediators act on separate signalling pathways or control the same pathways, synergistically or antagonistically, is an exciting ongoing field of investigation.

2. Structure of PI-PLCs

In every PI-PLC, the catalytic X and Y domains are flanked by regulatory sequences. In animals, PLC$_C$ is the structurally simplest isoform, with the catalytic domains being flanked by an N-terminal EF-hand domain and a C-terminal C2 domain [1] (Fig. 1). The other mammalian PI-PLCs have additional domains. They all possess an N-terminal pleckstrin homology (PH) domain, involved in membrane targeting and protein binding [5,6] while additional domains depend on specific isoforms. For instance, a C-terminal PDZ-domain (Post synaptic density-95, Drosophila disc large tumour suppressor, and Zonula occludens-1 protein) with a protein binding motif required for supramolecular complex formation is present in the mammalian PLC$_D$ [7]. All plant PI-PLCs are structurally related to the PLC$_C$ isoform [8], as they are formed by the succession of EF-hand, X/Y and C2 domains.

2.1. X and Y domains

Catalytic activity of all PI-PLCs is believed to strictly rely on the X/Y domains. It was demonstrated that single aminoacid substitution in X-domain abolished PLC catalytic activity [9]. Many residues are highly conserved in these domains of all eukaryotic PI-PLCs and they are involved in substrate binding and catalysis. For example, in animal PLC$_{B1}$, Lys$^{438}$, Lys$^{440}$, Ser$^{522}$ and Arg$^{549}$ are involved in interacting with the 4- and 5-phosphates of the substrate headgroup [10] and the positive charge of Arg$^{549}$ has been shown to be required for the preferential hydrolysis of PI-4,5-P$_2$ over PI [11]. Two conserved His residues in the X domain participate in the mixed acid/base-catalyzed reaction of phosphoinositide hydrolysis: one stabilizes the pentavalent phosphoryl transition state, and the other protonates and disjoints DAG and, being a nucleophile, attacks a 1,2-cyclic-inositol phosphate intermediate [12]. These His residues are conserved in plant PI-PLCs and correspond to His$^{128}$ and His$^{163}$ of the X domain of mung bean enzyme [13]. Substitution of a conserved Ser to Asn in the Y region of the active site of Physcomitrella patens PLC2 correlates with a reduced catalytic activity in comparison with the PLC1 isoform [14]. However, whether this Ser corresponds to Ser$^{522}$ in animal PLC$_D$ and therefore has a similar role in substrate interaction remains to be shown. Interestingly, Arabidopsis thaliana AtPLC6 and AtPLC9, that are the most divergent proteins compared to other AtPLCs, have long deletions in the Y region [15]. Consequently their catalytic activity is questionable. However, a distinct role of AtPLC5 in plant stress responses has been demonstrated using a plc9 mutant that displays a thermosensitive phenotype [16].

2.2. EF-hand domain

The conventional EF-hand domain consists of four helix–loop–helix folding motifs and is often characteristic of calcium-binding proteins [17]. In mammalian PI-PLCs, the EF-hand acts as an allosteric regulatory domain that binds calcium and lipids, stabilizes PI-PLC structure and assists in active site formation [18]. Moreover, in PLC$_B3$, the EF-hand participates in the formation of an active complex with Gx protein [19], while in PLC$_C$, it facilitates binding to tyrosine kinases [20]. These observations plead for a major role of the EF-hand as a structural determinant of PI-PLCs. However, plant PI-PLCs have no full length EF-hand domain since most of them have a truncated EF-hand consisting of only two helix–loop–helix motifs [12,21] while several plant PI-PLCs have no N-terminal EF-hand, such as AtPLC2 [22]. Soybean Pl-PLC1 contains an additional putative EF-hand-type calcium-binding motif located in between the X and Y domains, while the N-terminal EF-hand is truncated [23]. Because the EF-hand mediates the calcium-dependent activation of PLC$_C$ [24], it is tempting to postulate a similar role in plant PI-PLCs. Whether a truncated EF-hand can still carry out this function is unknown. Interestingly, PI-PLCs with no N-terminal EF-hand still show a catalytic activity [25]. Clearly the importance of the EF-hand domain is, as yet, not understood for plant PI-PLCs.

2.3. C2 domain

All identified plant PI-PLCs contain a C2 domain. This domain is described to bind phospholipid, and calcium may positively participate in this process [24]. In potato and rice PI-PLCs, specific hydrophobic residues [26] and the polylactic region K-(K,R)-K [25] in the C2 domain possibly mediate C2 domain binding to anionic phospholipids. In some plants, the C2 domain is sufficient to address PI-PLCs to the membranes [9,13,26] while in other cases, the C2 domain is involved in membrane targeting only when the EF-hand is present [27].

2.4. Other structural determinants

A highly hydrophilic and extremely divergent linker region between the X and Y domains is also believed to be essential and to play different roles in different PI-PLCs. In animals, the X–Y linker...
has an autoinhibitory function in all PI-PLCs, except PLCz [28]. In PLCc, the linker is rather positively charged and it is required for PI-4,5-P2 binding [29]. In contrast, plant PI-PLCs contain a linker region containing a high percentage of acidic residues that are presumed to be exposed at the surface of the folded protein [22]. To date, the role of the linker in plant PI-PLC activity remains to be identified.

A sequence with high homology to the G protein coupled-receptor motif has been found in the N-terminus region of Brassica napus PI-PLC2 [30] as well as in AtPLC2 [22]. Its function is unknown.

The Cys5 residue is essential for disulphide bond formation resulting in homodimerization of Chlamydomonas reinhardtii PI-PLC and a lower lipid affinity [31]. A Cys residue is present in the first 10 residues of most plant PI-PLCs but whether it is involved in homodimerization remains to be shown. Homodimerization via uncharacterized mechanisms have been demonstrated previously for putative animal and bacterial PLCs [32,33].

2.5. PI-PLC-like proteins

Several PI-PLC-like proteins lacking one or several canonical PI-PLC domains are found in plants. A Medicago truncatula DNF2 protein containing only the PI-PLC X domain, and thus closer to bacterial PI-PLCs than to eukaryotic PI-PLCs, has been shown to be involved in the control of symbiotic relations with Sinorhizobium meliloti [34]. Whether this protein possesses a PI-PLC catalytic activity or only interacts with PLC substrates remains to be shown. Putative PI-PLC proteins with a similar structure are also found in Arabidopsis, maize and rice (Supplemental Table 1).

Taken together, these data indicate that plant PI-PLCs possess a relatively simple structure when compared to animal PI-PLCs, they contain several essential domains — namely the X/Y catalytic domains, a C2 domain and truncated EF-hand domains. Regardless of these limited structural features, plant PI-PLC are regulatory targets that have important functions within plant cells.

3. Phylogenetic considerations

Due to the high level of structural identity, all PI-PLCs might share a common ancestor. Throughout evolution, PI-PLCs have evolved into distinct groups that are now represented as isozymes within multigene families. We have conducted a phylogenetic analysis of a number of plant PI-PLC enzymes (Fig. 2). They are usually grouped according to taxonomic traits. Algae PI-PLC sequences are more divergent from those of other plant species and more related to human and yeast PI-PLCs. Higher plant PI-PLCs are separated from human and yeast PI-PLC proteins which group together. Grouping of PI-PLCs from non-vascular plants — lycophytes and moss — was also observed, suggesting that PI-PLC sequences further independently multiplied and evolved after the separation of mosses, lycophytes, and vascular plants. All but one of monocot PI-PLCs were found to be grouped together. Multiple independent intraspecies duplications must have occurred, leading to PI-PLC family expansion in each species. For example, in Arabidopsis, genes AtPLC8 and AtPLC9 occur in a tandem array on chromosome 3 and may represent a relatively recent local duplication. Progenitors of AtPLC1/AtPLC3 possibly arose from a single gene by a duplication event on chromosome 5, with a subsequent duplication and relocation of AtPLC3 to chromosome 4 [15,35]. Highly similar AtPLC1, AtPLC4 and AtPLC5 genes are organized in tandem in a small DNA region of chromosome 5 possibly due to recent gene duplication events [35].

4. Regulation of plant PI-PLCs

Due to their intrinsic role as essential regulators of metabolism, PI-PLCs constantly undergo a tuning of activity mediated by effectors, regulatory domains and intracellular localization.
4.1. Localization

PI-PLCs have no predicted transmembrane domains (TMHMM Server v. 2.0) and there are no current experimental data suggesting palmitoylation of plant PI-PLCs. However, PI-PLC activity strictly requires either transient or permanent association with cell membranes where phosphoinositides are located.

In plants, PI-PLC activities were traditionally studied as either cytosolic or membrane-associated, with differences in preferred substrates and Ca\(^{2+}\) requirements [23]. Yet these two PI-PLC fractions may represent pools of the same proteins since a specific antibody raised against the N-terminal domain of AtPLC4 reacted with a 68 kDa protein both in the plasma membrane and cytosolic fractions [36]. Whether a mechanism of stress-induced translocation towards membranes, as shown for phospholipase D, is applicable to PI-PLC is currently unclear.

PI-PLC proteins apparently employ several means for being targeted to membranes. Critical roles of EF-hand [27] and C2 domains [13,26] in Ca\(^{2+}\)-regulated membrane-targeting has been demonstrated in plants. PI-4,5-P\(_2\) also appears to be important for PI-PLC membrane targeting. In mammals, the PH domain directs PLC activation and high affinity association with PI-4,5-P\(_2\) in membranes [37]. A role of the X–Y linker region in the binding of PLC\(_\gamma\), that lacks the PH domain, to PI-4,5-P\(_2\), has been suggested [29]. Plant PI-PLCs also lack the PH domain, and their X–Y linker is negatively charged, contrary to that of PLC\(_\gamma\), and plant cell membranes are poor in PI-4,5-P\(_2\) when compared to animal membranes [38]. Therefore, a PI-4,5-P\(_2\)-dependent mechanism of plant PLC membrane targeting still requires clarification.

So, to which membranes are PLCs associated? Most data point to a plasma membrane localization, based on studies with fluorescent fusion proteins [9,27,39] or tandem mass spectrometry studies [40–43]. However, PI-PLC has been observed with the endoplasmic reticulum of wheat [44] and barley [45]. Interestingly, PI-4,5-P\(_2\) is found only in plasma membranes [4], thus raising the question as to the PI-PLC substrate in other membranes.

Interestingly, several studies indicate the presence of cytosol-located PI-PLCs. NtPLC31 was shown to be cytoplasmic in quiescent tobacco BY2 cells [46] and a strong association to the actin cytoskeleton of a soluble protein that reacted with anti-bovine PLC\(_\beta\)1 polyclonal antibodies was demonstrated in oat roots [47].

Less data are available concerning the tissue localization of PI-PLCs. Genevestigator data [48] points out that the root and pollen are organs with high PLC transcript levels (Fig. 3A, B). GUS expression under the control of the AtPLC1 promoter was detected in petioles and vascular tissues. AtPLC5::GUS was detected in guard cells, roots and vascular cells. AtPLC4::GUS was detected in pollen and certain floral organs (Fig. 3C) [35].

4.2. Ca\(^{2+}\) dependency

All Arabidopsis PI-PLCs, with the possible exception of AtPLC4 [35], strictly require Ca\(^{2+}\) for their activity. Our current knowledge provides clues for both Ca\(^{2+}\)-driven activation and membrane targeting of plant PI-PLC [26]. Ca\(^{2+}\) requirement is often linked to substrate preference. PI-PLCs from Cupressus lusitanica [49] and P. patens [14] can use non-phosphorylated PI as a substrate at high Ca\(^{2+}\) concentrations. Not only do PI-PLCs depend on Ca\(^{2+}\), but in mammals they also actively contribute to its liberation from intracellular stores (via IP\(_3\) receptors), thus making them essential enzymes of Ca\(^{2+}\) turnover. Although no IP\(_3\) receptor has been genetically characterized in plants, there is evidence for IP\(_3\)-induced Ca\(^{2+}\) release, suggesting the presence of a conserved mechanism of Ca\(^{2+}\) regulation (see 9.3).

Fig. 3. Organ-specific expression of Arabidopsis PI-PLCs. Each PI-PLC isoform is colour-coded. (A, B) Microarray data were collected using Genevestigator interface [48]. In (A) colour saturation represents the absolute level of transcript abundance. In (B) the relative transcript prevalence is given as percentage of the level in the organ where the isoform is expressed at maximum level. (C) Organs and tissues where Arabidopsis PI-PLC isoforms are mainly expressed as shown by real-time PCR or promoter activity studies [15,35]. In (C), the expression of PI-PLC6, PI-PLC8 and PI-PLC9 of Arabidopsis can be distinguished.
4.3. Post translational modifications

4.3.1. Phosphorylation

In animals, regulation of PLCg activity by phosphorylation of tyrosine residues of X/Y linkers within the catalytic domain has been reported [50]. In plants, phosphorylation of PI-PLCs has also been shown. Several phosphorylation sites were identified in AtPLCs by mass spectrometry peptide analyses [51] (Table 1), some of them located within functional domains, such as the phosphorylation of Thr29 within an EF-hand like motif of AtPLC2, and phosphorylation of either Ser346 or Ser348 in the Y domain [52] while AtPLC7 contains adjacent phosphorylation sites at Thr169 and Ser170 in the X catalytic domain [53].

4.3.2. Palmitoylation

A covalent attachment of a fatty acid residue (S-acylation) is a common post-translational control of various protein properties [55]. Protein lipid modifications facilitate membrane targeting and interaction with negatively charged head groups of lipids such as PI-4,5-P2. Currently, there are no experimental data concerning palmitoylation of plant PI-PLCs. However, AtPLC1 and AtPLC3 have several high-probability putative palmitoylation sites at cysteine residues (Table 2) [56].

4.3.3. Ubiquitination

To our knowledge, no experimental data are available regarding ubiquitination of plant PI-PLCs. However, computational predictions suggest the presence of putative ubiquitination sites in AtPLC1, AtPLC2, AtPLC5, AtPLC6, AtPLC7 and AtPLC8 (BDM-PUB) (Table 2).

4.3.4. SUMOylation

Attachment of small ubiquitin-like modifiers (SUMOylation) to specific lysine residues in protein targets is another conserved mechanism of protein post-translational regulation [57]. Unlike the related ubiquitination, SUMOylated proteins are not directed for degradation and instead SUMOylation affects protein stability, activity and localization. Limited data are available regarding bona fide SUMOylation of plant PI-PLCs. SUMOylation of PLC8 was detected in heat-treated transgenic Arabidopsis plants over-expressing AtSUMO1 [58]. In addition, numerous putative SUMOylation sites were detected in PI-PLCs of Arabidopsis, and AtPLC2, AtPLC5, AtPLC6 and AtPLC8 have conventional tetrapeptide Ψ-K-x-E motifs while AtPLC7 has a good probability for the presence of a non-consensus SUMOylation site [59]. These predictions (Table 2) now require experimental proof.

4.3.5. Other modifications

In plants, treatment with the NO-donor S-nitroso-N-acetylpenicillamine induced PA formation both by PI-PLC and phospholipase D (PLD) [60] suggesting a possible mechanism of PI-PLC activity regulation via nitrosylation or nitration of cysteine/tyrosine residues. Whether PI-PLC is the direct target of nitrosylation is not known.

4.4. Protein–protein interactions

In mammalian cells, PI-PLCs interact with a range of regulatory elements including G-proteins [61], tyrosine kinases [62] and others [63]. Such interactions are thought to provide basic mechanisms of PI-PLC activity regulation and coordination with other cell effectors. Less is known about PI-PLC protein partners in plant cells. Current data point out a possible interaction with a G-protein coupled receptor system. PI-PLC activity was increased by cholera toxin (a G-protein agonist) and inhibited by pertussis toxin (a G-protein antagonist) in Lilium davidii pollen protoplasts [64]. PI-PLC activity from the cytosolic fraction of Phaseolus vulgaris root nodules was stimulated in vitro by mastoparan, a G-protein agonist [65]. Yeast two-hybrid experiments provided evidence for an interaction between PI-PLC and some G-protein subunits in L. davidii [66] and Pisum sativum [67]. Interestingly, Gs1, but not G0, is able to bind to the C2 domain of PLC8 from P. sativum [67]. PL-PLC in wheat (Triticum aestivum) was reported to interact with the Ga3 Gz subunit when expressed in tobacco epidermal leaf tissues [44].

Other proteins were also found to interact with PLCs. An example is Nicotiana tabacum Nic7 receptor-like protein implicated in plant reaction to wounding and osmotic stress resistance, which interacts with the C2 domain of NtPi-PLC in yeast two-hybrid screening and in planta when assayed by bimolecular fluorescence complementation [68]. Both proteins were detected in the plasmalemma when expressed in onion epidermal cell layers. Authors postulated that Nic7, that contains a C-terminal transmembrane domain, may drive PI-PLC plasma membrane targeting [68]. No protein encoded by the Arabidopsis genome shows a significant homology to Nic7.

Table 1
Biochemical properties and localization of Arabidopsis PI-PLCs. PM, plasma membrane.

<table>
<thead>
<tr>
<th>Name</th>
<th>AGI</th>
<th>Ca²⁺ dependency</th>
<th>Cell Localization</th>
<th>Protein–protein interaction</th>
<th>Co-expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtPLC1</td>
<td>At5g58670</td>
<td>+</td>
<td>PM</td>
<td>At4g01010</td>
<td>At5g42650, At3g1450</td>
</tr>
<tr>
<td>AtPLC2</td>
<td>At3g08510</td>
<td>+</td>
<td>PM</td>
<td>At4g00430, At5g02620, At4g31340, At5g27370, At5g84870</td>
<td></td>
</tr>
<tr>
<td>AtPLC3</td>
<td>At4g38530</td>
<td>+</td>
<td>PM</td>
<td>At5g02600, At1g61660, At5g64240</td>
<td></td>
</tr>
<tr>
<td>AtPLC4</td>
<td>At5g58700</td>
<td>+</td>
<td>PM</td>
<td>At5g30990, At5g58690</td>
<td></td>
</tr>
<tr>
<td>AtPLC5</td>
<td>At5g58690</td>
<td>+</td>
<td>?</td>
<td>At5g58700</td>
<td></td>
</tr>
<tr>
<td>AtPLC6</td>
<td>At2g40116</td>
<td>?</td>
<td>?</td>
<td>At1g12840, At2g22425, At3g08040, At3g12180, At3g48890, At4g30850, At5g47180, At1g21240, At4g20790, At5g59650, At1g31812, At2g26180, At2g41400, At3g58605, At5g37050</td>
<td></td>
</tr>
<tr>
<td>AtPLC7</td>
<td>At3g55940</td>
<td>?</td>
<td>PM</td>
<td>At5g37770</td>
<td></td>
</tr>
<tr>
<td>AtPLC8</td>
<td>At3g47290</td>
<td>?</td>
<td>?</td>
<td>At4g17550, At4g16950, At4g19530</td>
<td></td>
</tr>
<tr>
<td>AtPLC9</td>
<td>At3g47220</td>
<td>?</td>
<td>?</td>
<td>At5g42650, At3g1450</td>
<td></td>
</tr>
</tbody>
</table>

AtPLC6 and AtPLC9 cannot be distinguished in microarrays experiments used for co-expression analysis.

a Identified experimentally [36,69].

b MS/MS [40–43].

c In silico analysis [48].
High throughput screening for protein–protein interactions using the split-ubiquitin method yielded additional putative PI-PLC protein partners [69]. The roles of AtPLC protein partners (Table 1) could give indications concerning the role(s) of PI-PLCs. As an example, AtPLC1 interacted with cyclic nucleotide-gated channel 13 protein, a putative cyclic nucleotide and calmodulin-regulated ion channel that affects Ca2+ cell signalling [70]. AtPLC7 cross-reacted with diacylglycerol kinase 2 (DGK2), thus showing that they interact not only functionally but also physically in DAG- and PA-dependent lipid signalling [71]. Interactions between PI-PLC and protein kinases have also been reported (Table 1). Such interactions may result in the phosphorylation of PI-PLC in or regulating the phosphorylation of other protein partners. However, the physiological significance of most of the observed protein–protein interactions remains to be elucidated.

5. Plant PI-PLC expression and co expression web

The role of plant PI-PLCs can be assessed using transcriptome data. Expression studies of individual PI-PLC genes from different species have been performed but for this review we focus on transcriptome-wide analyses, in response to hormone treatment or environmental stresses (Fig. 4). For species where expression data of different isoforms are available, the expression pattern is usually characterized by a multidirectional regulation of the different isoforms. This is the case during elicitor and heat treatments for the PI-PLC genes of wheat and Arabidopsis. This kind of data can be interpreted as an evidence that PI-PLC genes in families are not necessarily redundant, and that some have specific and distinct roles, therefore have distinct expression regulation. Yet for some elicitations, all PI-PLC genes of a same species are regulated in the same way, as seen for cold treatment, abscisic acid (ABA shoots), drought, salt stress and wounding in Arabidopsis. These treatments, in the organ(s) considered, induce the expression of some PLC genes, while others are not affected. This is in agreement with a PI-PLC role in response to cold and osmotic stresses (see below).

It is conceivable that co-expression of genes may signify their functional association. A co-expression study was performed using the Genevestigator interface [48] (Table 1). Several AtPLCs co-express with genes implicated in plant stress and hormonal responses. AtPLC1 was found to be co-expressed with a gene encoding an allene oxide synthase (At5g42650) involved in the jasmonic acid (JA) biosynthetic pathway [72] and with a member of the calcium-dependent phosphodiesterase superfamily (At3g51450) implicated in plant responses to salicylic acid (SA), methyl jasmonate, wounding or pathogen inoculation [73]. AtPLC4 co-expressed with At5g63990 encoding a 3′(2′),5′-bisphosphate nucleotidase/inositol poly-phosphate 1-phosphatase, with a possible role during cold stress [74] and functionally related to the stress-responsive FRY1 gene implicated in the attenuation of the IP3 signal [75]. Due to their high similarity, AtPLC8 and AtPLC9 expression cannot be distinguished in Arabidopsis ATH1 22k arrays. AtPLC9/10 co-expressed with At4g16950 and At4g19530, both genes involved in plant immunity encoding NB-LRR receptor-like proteins [76,77]. AtPLC5 co-expressed with another biotic-stress protein, an SOS2-like Protein Kinase 5 (At2g30360) that is involved in controlling several plant activities and shown to directly phosphorylate NPR1 – a critical component of plant immunity [78]. AtPLC3 appears to co-express with type I metacaspase (At5g62440) that is known to be involved in the control of cell death [79] and AtPLC7 co-expresses with a member of the phosphate starvation-induced glycerol-3-phosphate permease gene family (At4g17550) possibly implicated

![Fig. 4. Changes in plant PI-PLC gene expression in response to hormone treatments and during stresses.](image-url)
in phosphorus transport during phosphate starvation [80]. Interestingly, AtPLC4 significantly co-expressed with AtPLCs, indicating the possible redundancy of these 2 isoforms.

6. PI-PLCs in plant development

PI-PLCs are often considered to be stress-activated enzymes. However, they also play a role in regulating growth and development-related processes both in animals [81] and plants [82]. The role of PI-PLC in plant development seems to be multifaceted. For instance, over-expression of BnPI-PLC2 caused both an early shift from vegetative to reproductive phases, and shorter maturation periods, together with alterations in hormonal distribution patterns in plant tissues [83]. IP3 is involved in the differentiation of xylem vessels [84] and stomon-to-tuber transition [85]. An influence of PI-PLC was also noted during asymmetric cell divisions that produce stomatal complexes in Zea mays [86]. PI-PLCs also seem to participate in cell cycle progression in tobacco, through DNA synthesis control [87].

Involvement of PI-PLCs in plant development has been well studied during polarized pollen growth. Such an asymmetric cell expansion is known to rely on several events including calcium signalling, vesicular trafficking and cytoskeleton rearrangements [88].

In the elongating pollen tube, PI-PLC accumulates in the plasma membrane specifically at the flanks of the tip, but not at the very apex. On the contrary, PI-4,5-P2 exclusively accumulates at the apex of the pollen tube [9,27]. It was shown that the PI-PLC inhibitor U73122 strongly inhibited pollen tube growth and led to swollen tips, thus indicating that expansion is no longer polarized [27]. The same effect was produced when a PI-PLC inactive form, that competes with the native protein for the localization in the membrane, is expressed in the pollen tube [9]. These effects (reduction of growth and swelling) correlate with the spreading of PI-4,5-P2 to the flanks of the tip. Therefore PI-PLC has an active role to create and maintain a PI-4,5-P2 gradient in the pollen tip, between the apical and lateral membranes, and this gradient is necessary for polarized growth [9,27,89]. The role of PI-4,5-P2 might be related to the control of actin cytoskeleton dynamics, of membrane trafficking including clathrin-dependent endocytosis, and to the control of apical pectin deposition [90–92].

In root hair tips, PI-4,5-P2 is also important for efficient growth. Arabidopsis mutants deficient in phosphatidylinositol-4-phosphate 5-kinase gene – enzyme producing PI-4,5-P2 – were significantly impaired in root hair development [93,94].

7. PI-PLCs in abiotic stress

Plants are sessile organisms that require specific mechanisms in order to resist or adapt to undesirable environmental conditions, such as increased soil salt concentration, high or low temperature, and water shortage.

7.1. Osmotic stress

The role of PI-PLC in the production of polyphosphoinositides and their role during osmotic-stress induced cell signalling have been discussed in detail by Munnik et al. [95]. Different salts (NaCl, KCl) and osmotic stress inducers (mannitol, sorbitol and mannose) [96–99] evoke a rapid (often within seconds) increase in IP3 levels. This increase has a positive role regarding osmotic stress resistance as supported by genetic studies of inositol polyphosphate kinases [100,101] and phosphatases [75,102]. Apparently not all PI-PLCs participate in stress signalling as PA, PI-4-P or PI-4,5-P2 levels were found to be identical in wild type and in a AtPLC3/AtPLC6/AtPLC9 triple mutant in response to salts [103].

The increase in IP3 production during osmotic-stress is accompanied by a rise of PI-4,5-P2 levels [96,104]. This may suggest that PI-PLC functions simultaneously with phosphoinositide kinases in stress signalling. Whether this PI-4,5-P2 is produced to serve as a PI-PLC substrate [105] or as a specific signalling molecules per se [106] is not known.

PI-PLC activation in response to osmotic stress may be dependent on activation of a specific receptor or an unspecific destabilization of cellular compartments resulting in a calcium increase [107]. Interestingly, the rapid PLC activation in response to hypersaline conditions caused by mannitol in wheat roots was shown to be the result of microtubule destabilization [108].

Rapid calcium release into the cytosol in response to salt and osmotic stress observed in Arabidopsis root tips [96], seedlings [102] and tobacco cells [109] was shown to be dependent on PI-PLC. PI-PLCs affect several cellular processes in hyperosmotic stress conditions including microtubule polymer recovery in plasmolyzed wheat root cells [108], rapid MAPK activation and ROS generation in soybean [110], release of Tubby transcriptional factors from the plasma membrane [111] and the control of phoshoenolpyruvate carboxylase kinase 1 gene expression in sorghum [112].

Abscisic acid (ABA) is one of the key plant stress hormones that accumulate upon stress exposure and it controls many plant defence reactions [113]. In plants, PI-PLC seems to be actively involved in ABA-dependent signalling. As an example, exogenous ABA treatment evoked IP3 accumulation in Arabidopsis seedlings [75]. More importantly, in Commelina communis ABA-sensitivity of guard-cells that control leaf transpiration was impaired by the addition of heparin – an IP3 antagonist [114]. Previously, inhibitor studies demonstrated that the regulatory role of PI-PLC on guard-cell movements is likely to be implemented via calcium oscillations [115].

Proline is an osmolyte that accumulates in plants in order to alleviate osmotic stress action. In Arabidopsis, PI-PLC, IP3 and IP4-gated calcium release regulate transcriptional and post-transcriptional events which subsequently lead to proline accumulation in response to ionic, but not to non-ionic hyperosmotic stress [107]. Gene expression changes are also known to be mediated by PI-PLC in response to dehydration [102,116]. However, an artificial decrease in IP3 levels by expressing inositol polyphosphate phosphatase increased drought tolerance [102]. This discrepancy may be in part explained by pharmacological studies conducted with the halophyte plant Thellungiella halophila. In this species, in the absence of stress and in response to moderate salt stress (200 mM), PI-PLC negatively regulated proline accumulation and expression of genes coding proline metabolism enzymes. However, during severe salt and osmotic stress conditions, PI-PLC positively affected the osmolyte level [117]. This supports a notion about divergence in metabolism responses to osmotic stress evoked by PI-PLC depending on stress severity or plant robustness.

7.2. Heat stress

Heat exposure increased PI-PLC activity in pea membranes with a maximum at 40 min [118]. This observation was consistent with the observed PI-PLC protein accumulation in heat-treated plants [39]. In Arabidopsis, rapid (within minutes) and substantial IP3 accumulation in response to heat stress was reported [119]. The heat-activated AtPLC9 activity was required for intracellular calcium accumulation, AtHsp promoter activity, stress-dependent gene expression and heat acclimation [16,119].
7.3. Cold stress

Despite its opposite physical nature, cold stress induces signal transduction in cells that also involves PI-PLC pathway(s). Rapid and transient IP_3 accumulation with a simultaneous decrease in PI-4-P and PI-4,5-P_2 levels was observed in winter wheat tissues [120], Arabidopsis suspension cells [121] and oilseed rape leaves [122] subjected to cold stress. Later, mutant analyses of inositol polyphosphate kinases [99] and phosphatases [75,123] validated the role of IP_3 in cold tolerance. Cold-induced activation of PI-PLCs is dependent on calcium entry into the cells [121] while substrates for PI-PLCs are supplied by type III-phosphatidylinositol 4-kinases [106]. Analysis of Arabidopsis mutants altered in fatty acid desaturase activity suggests that cold-induced membrane rigidification is upstream of PI-PLC activation [124], leading to the model where cold would rigidify membranes, leading to calcium entry and then to PI-PLC activity. To date, main downstream components of cold-induced PI-PLC activation are poorly studied. A plant expressing the mammalian type I inositol polyphosphate 5-phosphatase (that cleaves IP_3) accumulates 30% less calcium in response to cold [102]. In addition, pharmacological studies have suggested that phosphoinositide metabolism may be upstream of microtubule depolymerization in response to cold stress [125] while expression of a subset of genes regulated by low temperature was dependent on PI-PLC activity [126]. It should be noted that cold stress also induces the expression of PI-PLC genes in B. napus [30], Z. mays [127,128], winter wheat [129] and Arabidopsis [15], thus supporting a role of PI-PLC in cold acclimation.

7.4. Heavy metal stress

Toxic metals can severely inhibit plant cell metabolism by affecting many main enzymatic reactions, 

\[ \text{Cu}^{2+}, \text{Zn}^{2+} \text{ and especially } \text{Cu}^{2+} \text{ decreased in vitro PI-PLC activity in both membrane and soluble fractions of Catharanthus roseus roots} \]

[130]. However, in another study, copper excess rapidly increased in vivo DAG accumulation in roots of B. napus that could reflect PI-PLC activation [131]. Moreover, copper-induced release of intracellular calcium in marine alga Ulva compressa seems to be dependent on PI-PLC activity [132]. Aluminium is currently the best studied toxic metal in terms of affecting plant PI-PLC activity. In Coffea arabica suspension cells, aluminium treatment induced a rapid PI-PLC activation and IP_3 accumulation [133]. However, a prolonged exposure led to inhibition of PI-PLC [134,135]. Aluminium may block PI-4,5-P_2 hydrolysis by binding to it or substituting calcium bond to liposomal lipids [25]. The mechanisms involved in the rapid activation of PI-PLC by aluminium remain to be revealed.

7.5. Other stresses

Several other stress signals appear to be transmitted in plant cells by a PI-PLC pathway. Hypoxia induces a rapid G-protein-dependent IP_3 accumulation in rice roots. This PLC activation is further transmitted by IP_3-sensitive calcium channels, calcium and calmodulin that are required for gamma-aminobutyric acid accumulation and cellular potassium loss during anaerobic stress [136]. Interestingly, in Peganum harmala calli, extremely low frequency electromagnetic fields rapidly reduced PI-4,5-P_2 levels [137]. This effect was blocked by PI-PLC inhibitors, indicating that membranes may be the primary site of electromagnetic stimulus perception that induces PI-PLC activation.

8. PI-PLCs in biotic stress

Plants possess unique defence mechanisms that enable a single cell to fulfill the role of an integrated immune system. Two defence strategies are usually employed during plant–pathogen interactions [138]. Upon contact with a pathogen, plants are able to rapidly develop a hypersensitive response (HR) leading to cell death at the point of infection and thus restricting pathogen propagation. Alternatively plants can induce systemic acquired resistance (SAR) or induced systemic resistance (ISR) by activation of defence genes and production of antimicrobial metabolites that limit pathogen growth at the whole plant level. Phospholipases and phospholipid-derived molecules are recognized to be intrinsic components of both defence strategies [139].

PI-PLC-derived molecules seem to be involved in plant defence reactions. DAG rapidly accumulated in rice cells following exposure to the elicitor N-acetylchitoooligosaccharide [140] while rapid and transient accumulation of IP_3 was observed in elicited C. lusitana cells [49]. PI-PLC inhibitor U73122 reduced accumulation of phytoalexin and ROS production in tobacco cells elicited with riboflavin [141] and in transgenic tobacco cells elicited during a simulated Cf-4/Avr4 interaction [142]. U73122 also reduced ROS production in tomato cells elicited with chitosan [143].

Transcriptional activation of PI-PLC genes is common during biotic stress conditions. In tomato, several PI-PLC gene family members were identified as crucial components of plant defence systems [144]. Prominent roles were ascribed to tomato SlPLC4 and SlPLC6 genes that are induced under biotic stress and differentially control the onset of HR and plant resistance against Cladosporium fulvum, Verticillium dahlia and Pseudomonas syringae pathogens.

Despite numerous biochemical evidences, the roles of the molecules produced by PI-PLC in mediation of defence reactions are not entirely clear. The addition of synthetic DAG induced quick ROS accumulation in rice cells [140] and activated expression of defence-related genes [145]. It was also shown that phorbol myristate acetate, an analogue of DAG that cannot be converted to PA, mimicked the effects of chitosan elicitor and induced anthraquione accumulation in cultured Rubia tinctorum cells [146], suggesting that DAG can act not only as a PA precursor, but can also have a role per se during plant immune signalling.

Arabidopsis mutants expressing a mammalian type I inositol polyphosphate 5-phosphatase, thus characterized by low levels of IP_3 and IP_6 had a reduced cytosolic Ca^{2+} increase in response to flagellin [147]. Therefore, it is possible that PI-PLC can regulate plant defence reactions by bringing about changes to cytosolic Ca^{2+} that are perceived by Ca^{2+} dependent protein kinases [148].

Symbiotic relations are special cases of plant–bacteria interactions mediated by a special class of molecules named nodulation factors (Nod) recognized by special plant receptor kinases. An essential role of PI-PLC, PLD and their corresponding lipid products, DAG and PA, in controlling downstream responses of M. truncatula root hair cells during nod factor-induced signalling has been convincingly revealed [149]. Interestingly, the symbiotic relationship between M. truncatula and S. meliloti was shown to be controlled by DNF2 protein that contains the X domain of PI-PLC [34]. The other conventional domains of PI-PLC are absent in DNF2. The authors speculated that DNF2 may bind, but not cleave, phosphoinositides, thus preventing their hydrolysis by PI-PLC and the onset of defence reactions that may result in bacteroid degradation.

Intriguingly, plant pathogens also frequently make use of PI-PLC signalling. Despite having biochemical properties similar to those of plant PI-PLCs, bacterial PI-PLC activity is often a prerequisite for pathogenicity [150]. It is thought that they act to either suppress or overwhelm plant innate defence mechanisms or to lyse cells. This
indicates the requirement for a precise balancing of defence mechanisms in vivo, granting either plant resistance or disease. Such knowledge is important for the future biotechnological development of disease-resistant plants.

In summary, plant PI-PLC plays an important role in signal transduction in response to different stresses, representing a key hub within the complex network of cellular regulatory systems. However, the regulation of PI-PLCs, the involvement of specific PI-PLC genes, the mechanistic action of generated second messengers in abiotic and biotic stress signalling and responses require further investigation.

9. PI-PLC modes of action in plant cells

Taking into account the multitude of signalling events involving PI-PLCs, it is of great interest to know which downstream events convey PI-PLC signals. PI-PLC signalling in plants can be associated with changes in the cellular concentration of several molecules; either direct (DAG, IP3) or indirect (PA) products [151], and phosphoinositide substrates [152].

9.1. Diacylglycerol

In animals, DAG serves as a classical second messenger that activates protein kinase C (PKC) by binding to its C1 domain [153]. However, no homologous PKC genes have been identified in plants. In addition, DAG has not been shown to activate any purified plant protein kinase. Although different effects of the DAG analogue phorbol myristate acetate have been described [154,155], their relation to PI-PLC activity and DAG action remains to be established. Thus, the canonical role of DAG as a protein kinase activator in plants is controversial. On the other hand, many different C1 domain-containing proteins are encoded by Arabidopsis [156], rice and other plant genomes. C1 domain-containing proteins are not limited to predicted protein kinase activities, one such protein was shown to possess a transactivation activity in wheat [157], but the role of DAG has yet to be investigated.

Taking into account that DAG is also a precursor of galactolipids, structural phospholipids and storage lipids, only specifically localized, tightly controlled and transient DAG accumulation may fulfill signalling functions in plants. Determination of such DAG signalling levels in plants is still a challenge and complicated by the observation that basal DAG levels differ between plant organs [158].

9.2. Phosphatidic acid

DAG, a direct product of PI-PLC [159], can be phosphorylated to PA by diacylglycerol kinases (DGK) [160,161]. PA can also be produced by the action of phospholipases D on structural phospholipids. The coupling of DGK with PI-PLC, leading to PA synthesis, has been established in response to salt in rice [104], to cold in Arabidopsis cells [121,126], seedlings [106] and adult leaves [161], and to shear stress in Fucus cuspida tus cells [162].

In plants, as in animals, PA is a well-known second messenger [163]. In Arabidopsis, PA binds and mediates membrane recruitment of glyceraldehyde 3-phosphate dehydrogenase, clathrin heavy chain proteins and sucrose non-fermenting-1-related protein kinase 2 during salt stress [164,165]. PA activates calcium-dependent protein kinase [166], MAP kinase GMK1 [110] and monogalactosyldiacylglycerol synthase [167]. In contrast, inhibition of actin-capping proteins [168] and protein phosphatase 1 [169] by PA has been reported. PA has also been suggested to play a role in ATPase interactions with 14–3–3 proteins, causing inhibition of ATPase activity [170], and induced proteolytic cleavage of bound glyceraldehyde 3-phosphate dehydrogenase [171].

The fact that PA is an active mediator in the PLC/DGK pathway is reinforced considering the effect of DGK inhibition or over-expression. Overexpression of rice OsBIDK1 (a DGK) in tobacco conferred amplified resistance against tobacco mosaic virus and Phytophthora parasitica var. nicotianae pathogen [172]. Application of R59022, a DGK inhibitor, hampered defensive ROS generation in xylanase-induced ROS production in tomato cells [173]. In another study, PI-PLC inhibitor U73122 reduced ROS production in tomato cells elicted with chitosan [143] and the authors assumed that this was dependent on NO-induced PLC/DGK generation of PA. DGK inhibitor R59022 reduced primary root elongation and plant growth in Arabidopsis [174] and inhibited tobacco pollen tube growth [175].

9.3. Soluble inositol-phosphates

PI-PLC action in plants is thought to be tightly related to polyphosphoinositide signalling [176]. Previously, many effects of soluble phosphorylated inositols produced by PI-PLC have been studied in relation to calcium signalling [177]. In animals, a role of IP3 in the regulation of Ca2+ fluxes by binding to IP3 receptors (Ca2+ channel) located mainly on the ER is dogmatic [178,179]. The physiological role of IP3 is also obvious in plants however it is most likely mediated by different mechanisms. Early findings concerning IP3 influence on cell calcium oscillations are thoroughly summarized in the review by Krinke et al. [180]. More recent studies revealed that IP3 is also implicated in regulation of diurnal cytosolic Ca2+ oscillations induced by exogenous calcium [181] and Ca2+-dependent proline accumulation in salt-stressed Arabidopsis [107].

Apart from PI-PLC, several other enzymes are involved in the control of IP3 abundance and induced calcium signalling. Studies of the supo1 mutant of Arabidopsis defective in inositol polyphosphate 1-phosphatase have shown that regulation of auxin distribution through PIN transporters is mediated by cytosolic calcium release controlled by IP3 [182]. It was also shown that elevated IP3 levels in Arabidopsis inositol polyphosphate 5-phosphatase mutants resulted in elevated concentrations and altered distributions of cytosolic Ca2+ in developing pollen [183]. However, there is no direct genetic or molecular evidence for the existence of plant IP3 receptors. If such a receptor exists, it apparently does not share sequence homology with the analogous animal proteins, and most likely represents a multidomain heteromeric complex [186]. Nevertheless, several studies have provided indirect evidence of a receptor-like IP3-binding protein or complex in plant cells. Indeed, IP3 had a high affinity towards reticulum-enriched membrane fractions prepared from Chenopodium rubrum leaves [184]. While, 2-aminoethoxydiphenylborate, an inhibitor of IP3-mediated calcium release described in animals, was able to reduce cytosolic calcium spiking in M. truncatula root hairs induced by Nod factors [185]. It is also apparent that the regulatory role of soluble PI-PLC products in plants is not limited to IP3 production. Products of further IP3 phosphorylation, inositol tetrakisphosphate (IP4), inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6), seem to be equally important. According to several studies, phosphorylated products of IP3 produced via inositol-phosphate kinase activity fulfill their own signalling role in plants. IP6 (also named phytate) is relatively abundant in plant cells and sometimes regarded as a phosphorus storage molecule. However its signalling role has been demonstrated since it triggered intracellular calcium release after ABA addition in patch-clamped guard cell protoplasts of Vicia faba [186] and regulated potassium-inward rectifying channel conductance [187]. The role of IP5 in plant resistance was also demonstrated [188] with authors suggesting that low levels of IP5 in mutant plants lacking myo-inositol phosphate synthase or IP5–2–kinase genes corresponded to a higher sensitivity to infection.
by different groups of pathogens attributed to impaired SA accumulation. Other genetic studies indicate that components of a phosphoinositide signalling pathway are involved in the induction of wound-inducible defence gene expression and resistance to herbivores [98]. In turn, tolerance to oxidative stress may be mediated in part by products of IP3 phosphorylation [100,101].

IP3 and IP5, but not IP6, have also been reported to be potent activators of the COI–JAZ co-receptor interaction with coronatine, an analogue of JA [189]. Beyond JA, the metabolism of soluble inositol polyphosphates might also affect auxin signalling through modulation of the level of the IP3 ligand of auxin receptor TIR1 [190] but how this affects auxin response remains unclear. Moreover, whether other hormone receptors are affected by these metabolites has not yet been described.

9.4. Phosphoinositide level

PI-PLC activity will not only result in the production of molecules. It will also lead to a decrease in its substrates, the PI-4,5-P2. Because PI-4,5-P2 and its precursor PI-4-P can bind to proteins, thus modifying their localization and/or activity [4], theoretically PI-PLC action could be transduced through the modification of the level of these molecules, the phosphoinositides. Does it really occur in plant cells? It seems that it is indeed the role of PI-PLCs in the pollen tube. In this organ, inhibiting PI-PLC [9,27], or over-expressing PI-4-P-5-kinases [90,191], that produce PI-4,5-P2, result in the same phenotype, the swelling of the pollen tip (which corresponds to a loss of polarized growth). The common action of inhibiting PI-PLC and of overexpressing PI-4-P-5-kinases is to lead to an increase in PI-4,5-P2. As already explained, the strict control of the level of PI-4,5-P2 in a particular pollen tube zone, is necessary for pollen polarized growth. PI-PLC has a major role in this process.

10. Conclusion and open questions

In plants, PI-PLCs have major roles in responses to environmental stresses and in plant development. Despite the importance of these roles, the functioning of the PI-PLC pathway is far from being fully understood.

To function, PI-PLCs must be coupled to the enzymes that produce the substrates, i.e. the phosphoinositides. It is important to understand if stimulated PI-PLCs use the phosphoinositide pool already present in plant membranes before the activating stress, or if a de novo phosphoinositide synthesis, occurring concomitantly with PI-PLC activity, participates in providing the substrate used by PI-PLC. Our data show that during a cold stress, de novo synthesis by PI-4 kinases participates in substrate providing [106] but whether this can be generalised to other activation situations is not known. Besides, the phosphorylation of PI into PI-4-P by PI-4-kinases takes place most probably in endomembranes. How the de novo synthesis of PI-4-P is compatible with PI-4,5-P2 production and subsequent hydrolysis by PI-PLC in the plasma membrane is another intriguing question [105].

We have also seen that most PI-PLC actions do not rely on the direct enzyme products, but on their phosphorylation products, such as IP3/IP5 or PA. Therefore a functional coupling between PI-PLC and DGK and inositol-phosphate-kinase exists. Does this coupling require a physical interaction between these enzymes? And if yes, which isoforms are involved? The data discussed above suggesting an interaction between Arabidopsis PLC7 and DGK2 support the existence of physical coupling but it needs more characterization, including structural characterization. Does this mean that PI-PLC is part of a supramolecular complex, a so-called signalosome or signalling platform that comprise PI-PLC, the kinases necessary for the phosphorylation of the products, together with the proteins that are the targets of these phosphorylated products? The existence of such a platform is an exciting hypothesis to investigate.

The roles of IP3/IP6 or PA in the PI-PLC transducing pathway seem clearly established. Does this mean that PI-PLC action is not mediated also by other molecules? First, the potential of DAG as an active molecule cannot be ruled out. At least the capacity of plant C1 domain-bearing proteins to actually bind DAG should be considered. Moreover, proteins can certainly bind DAG through non-conserved motifs. Besides, PI-4-P and PI-4,5-P2 are active molecules per se [4] and therefore PI-PLC could also affect cells by diminishing phosphoinositide levels. Such a regulatory role occurs during polarized growth. Does it also intervene in response to environmental stresses and/or hormones.

Calcium metabolism clearly appears to be the main cellular process controlled by PI-PLC via soluble inositol-phosphates and their action on calcium channels. But it is also possible that PI-PLCs influence Ca2+ signalling indirectly by affecting Ca2+-sensitive cell targets. Indeed, recently it has been shown that the activity of stress-induced calcium-dependent protein kinase CaCDPK1 from chickpea, implicated in salt-stress responses, is regulated both by PA and, less efficiently, by DAG [166]. Furthermore, PCaP2 protein located predominantly in the plasma membrane of Arabidopsis root hair cells was shown to interact with PI-4,5-P2 [192]. This raises the question of how the different active molecules generated or controlled directly by PI-PLC (DAG/PA, inositol-phosphates and phosphoinositides) act together. Is there necessarily a synergetic action between lipid and soluble messengers, or can antagonistic actions be envisaged?

Finally, more studies are necessary to understand PI-PLC signalling since the actual in planta substrate is still undetermined. PI-4-P is much more abundant in plant cell membranes than PI-4,5-P2, and the PI-4,5-P2 vs. PI-4-P ratio is 10-fold higher in animals than in plants. Taking into account that PI-PLC can use PI-4-P as a substrate in vitro raises the possibility of this monophosphorylated PI to be an in vivo PI-PLC substrate. When UT73122, a PI-PLC inhibitor, is added to plant cells, IP2 level increases [38] thus indicating that PI-4,5-P2 is an in vivo PI-PLC substrate, but this does not rule out that PI-4-P also has this role. Besides, it was shown that, in vitro, tomato SlPLC4 and SlPLC6 do not hydrolyse PI-4,5-P2 but PI [144].

In conclusion, plant PI-PLCs are amongst the structurally simplest eukaryotic PI-PLCs. Like the mammalian PI-PLCs, they are only composed of EF-hand, X/Y and C2 domains and they do not possess a PH domain. Nevertheless, they are targets of many regulatory processes that require further characterization, including the role of protein–protein interactions in the control of plant PI-PLC activity. Even though significant differences with the mammalian canonical PI-PLC transduction module exist, including the importance of phosphorylated forms of the direct PI-PLC products as mediators, the cellular effects controlled by PI-PLCs are similar and include calcium signatures and cell phosphoproteome.

Acknowledgements

This work was supported by grants from NAS of Ukraine (91-06-13 and 8-13) and from SFRP of Ukraine (F41.04/02-2012). The authors acknowledge funding from the French Agence Nationale de la Recherche Programme Blanc PANACEA NT09_517917 (contract to ER). We would like to thank Michael Hodges (Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Université Paris Sud, France) for carefully reading the manuscript.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.biochi.2013.07.004.
References


B. van Schooten, Dissecting Arabidopsis Phospholipid Signaling Using Reverse Genetics, Faculty of Science, FHWA; Swammerdam Institute for Life Sciences, Amsterdam, pp. 101–124.


E. Delage, E. Rueuład, A. Zachowski, J. Puyaubert, Eat or in take away? How phosphatidylinositol 4-kinases feed the phospholipase C pathway with substrate, Plant Signal Behav. 7 (2012) 1197–1199.


E. Parre, M.A. Ghars, A.-S. Leprince, L. Thiery, D. Lefebvre-De Vos, A.-S. Leprince, E. Parre, M.U. Reitz, J.K. Bissue, K. Zocher, A. Attard, R. Hückelhoven, K. Becker, J. Im, H. Lee, J. Kim, H. Kim, C. An, Soybean MAPK, GMK1 is dually regulated


M.R. McAinsh, Abscisic acid induces oscillations in guard-cell cytosolic free Ca2+

I. Pokotylo et al. / Biochimie 96 (2014) 144–157


Y. Wang, Y.-J. Chu, H.-W. Xue, Inositol phospholipase 5-phosphatase controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen, Development 139 (2012) 2221–2233.


Y. Wang, Y.-J. Chu, H.-W. Xue, Inositol phospholipase 5-phosphatase controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen, Development 139 (2012) 2221–2233.